
‭KitchenSync‬

‭Developer and User Manual‬

‭Version:‬‭1.0‬

‭Prepared by:‬

‭Chris Nederhoed‬

‭Tyler Son‬

‭David Tran‬

‭Institution:‬‭Florida Institute of Technology‬

‭Advised By:‬‭Dr. Fitzroy Nembhard‬

‭Submitted To:‬‭Dr. Philip Chan‬

‭Date:‬‭April 12, 2025‬

‭Contents‬

‭Contents‬‭..‬‭2‬
‭User‬‭Manual‬‭..‬‭4‬

‭Introduction‬‭&‬‭System‬‭Overview‬‭...‬‭4‬
‭What‬‭is‬‭KitchenSync?‬‭..‬‭4‬
‭Key‬‭features‬‭and‬‭goals‬‭(e.g.,‬‭managing‬‭pantry‬‭inventory,‬‭planning‬‭meals)‬‭..........‬‭4‬
‭Target‬‭users:‬‭Home‬‭cooks,‬‭students,‬‭families,‬‭administrators‬‭...............................‬‭5‬
‭How‬‭the‬‭system‬‭helps‬‭reduce‬‭food‬‭waste‬‭and‬‭plan‬‭meals‬‭efficiently‬‭....................‬‭5‬

‭Getting‬‭Started‬‭..‬‭6‬
‭System‬‭requirements‬‭(Java‬‭version,‬‭Python‬‭dependencies,‬‭OS)‬‭..........................‬‭6‬
‭Installation/launch‬‭instructions‬‭...‬‭6‬
‭Creating‬‭a‬‭user‬‭account‬‭...‬‭6‬
‭Logging‬‭in‬‭/‬‭resetting‬‭password‬‭...‬‭6‬
‭Role-based‬‭access‬‭(User‬‭vs‬‭Admin)‬‭..‬‭7‬

‭Using‬‭the‬‭Inventory‬‭System‬‭..‬‭7‬
‭How‬‭to‬‭add‬‭an‬‭ingredient‬‭...‬‭7‬

‭1.‬‭Manual‬‭entry‬‭...‬‭7‬
‭2.‬‭Barcode‬‭scanning‬‭...‬‭8‬
‭3.‬‭Receipt‬‭OCR‬‭upload‬‭...‬‭8‬

‭Editing‬‭or‬‭deleting‬‭items‬‭...‬‭9‬
‭Viewing‬‭by‬‭location‬‭(Fridge,‬‭Freezer,‬‭Pantry)‬‭..‬‭9‬
‭Understanding‬‭tags‬‭(Expiring‬‭Soon,‬‭Dairy,‬‭Protein)‬‭...‬‭10‬

‭Recipes‬‭&‬‭Meal‬‭Planner‬‭..‬‭10‬
‭Creating‬‭a‬‭recipe‬‭(steps,‬‭images,‬‭equipment)‬‭...‬‭10‬
‭Browsing‬‭community‬‭recipes‬‭...‬‭12‬
‭Planning‬‭a‬‭meal‬‭(day,‬‭week,‬‭month‬‭views)‬‭..‬‭12‬
‭Scheduling‬‭meals‬‭with‬‭prep,‬‭passive,‬‭and‬‭cook‬‭time‬‭..‬‭13‬
‭Generating‬‭a‬‭shopping‬‭list‬‭...‬‭14‬

‭Smart‬‭Features‬‭&‬‭Recommendations‬‭...‬‭15‬
‭“What‬‭can‬‭I‬‭cook‬‭now?”‬‭logic‬‭based‬‭on‬‭inventory‬‭...‬‭15‬
‭Recommended‬‭meals‬‭when‬‭adding‬‭to‬‭planner‬‭..‬‭15‬
‭Nutrition‬‭estimates‬‭and‬‭goals‬‭...‬‭15‬
‭Tag‬‭filtering‬‭(e.g.,‬‭Vegetarian,‬‭Gluten-Free)‬‭...‬‭16‬
‭Highlighting‬‭missing‬‭or‬‭thaw-required‬‭ingredients‬‭...‬‭16‬

‭Support,‬‭FAQ,‬‭&‬‭Tips‬‭...‬‭17‬
‭Common‬‭troubleshooting‬‭(e.g.,‬‭items‬‭not‬‭showing‬‭up,‬‭scanning‬‭fails)‬‭................‬‭17‬

‭Tips‬‭for‬‭maximizing‬‭inventory‬‭life‬‭...‬‭18‬
‭FAQ‬‭(e.g.,‬‭“Can‬‭I‬‭share‬‭recipes?”)‬‭...‬‭18‬
‭Glossary‬‭of‬‭terms‬‭(Prep‬‭Time,‬‭Passive‬‭Time,‬‭Meal‬‭Group‬‭ID,‬‭etc.)‬‭....................‬‭19‬

‭Developer‬‭Manual‬‭...‬‭21‬
‭System‬‭Architecture‬‭&‬‭Technologies‬‭...‬‭21‬

‭System‬‭architecture‬‭diagram:‬‭..‬‭21‬
‭Description‬‭of‬‭how‬‭components‬‭interact‬‭(e.g.,‬‭Java‬‭calls‬‭Python)‬‭.......................‬‭22‬
‭Technologies‬‭used:‬‭..‬‭22‬

‭Source‬‭Code‬‭Structure‬‭..‬‭23‬
‭●‬‭Project‬‭structure‬‭overview:‬‭...‬‭23‬

‭Key‬‭Java‬‭Classes‬‭&‬‭Methods‬‭..‬‭24‬
‭Overview‬‭of‬‭key‬‭classes:‬‭...‬‭24‬
‭Sample‬‭method‬‭descriptions:‬‭...‬‭24‬

‭Python‬‭Modules‬‭&‬‭Integration‬‭...‬‭27‬
‭Database‬‭&‬‭API‬‭Details‬‭...‬‭29‬

‭DynamoDB‬‭schema‬‭for:‬‭...‬‭29‬
‭Development‬‭Setup‬‭&‬‭Contribution‬‭Guide‬‭..‬‭32‬

‭How‬‭to‬‭run‬‭the‬‭project‬‭locally‬‭(JavaFX‬‭setup,‬‭Python‬‭requirements)‬‭..................‬‭32‬
‭How‬‭to‬‭add‬‭a‬‭new‬‭controller/screen‬‭...‬‭32‬
‭Coding‬‭guidelines‬‭(e.g.,‬‭method‬‭naming,‬‭error‬‭handling)‬‭....................................‬‭32‬
‭How‬‭to‬‭submit‬‭features‬‭or‬‭fix‬‭bugs‬‭...‬‭32‬
‭Git‬‭best‬‭practices:‬‭..‬‭32‬

‭User Manual‬

‭Introduction & System Overview‬

‭What is KitchenSync?‬

‭KitchenSync is a smart pantry and meal planning companion designed to help home‬

‭chefs, families, and students take control of their kitchen. Whether you're tracking‬

‭what’s in your fridge, planning meals ahead, or trying to cut down grocery costs,‬

‭KitchenSync brings all the tools you need into one clean, easy-to-use platform.‬

‭It replaces the need for multiple apps and manual tracking by offering a complete‬

‭solution that syncs your inventory, recipes, and shopping habits—so you always know‬

‭what’s on hand, what’s expiring, what you can cook, and what you need to buy.‬

‭Key features and goals (e.g., managing pantry inventory, planning meals)‬

‭Pantry & Inventory Management:‬‭Track what you have‬‭in your kitchen across spaces‬

‭like the fridge, freezer, pantry, or cabinet.‬

‭Barcode & Receipt Scanning:‬‭Add items quickly by scanning‬‭barcodes or uploading‬

‭receipts. No more guessing what you bought!‬

‭Smart Notifications:‬‭Get alerts when items are running‬‭low, close to expiring, or need‬

‭to be used soon.‬

‭Recipe Management:‬‭Save, create, and share your favorite‬‭recipes with detailed steps,‬

‭ingredients, equipment, substitutions, and nutrition info.‬

‭Meal Planner:‬‭Schedule meals day-by-day or week-by-week‬‭with automatic deduction‬

‭from inventory and reminders for prep/cook times.‬

‭Shopping Assistant:‬‭Build store-specific lists, compare‬‭prices at local or online stores,‬

‭and calculate meal costs per serving.‬

‭Ready-to-Cook Suggestions:‬‭Instantly see recipes you can make based on what’s in‬

‭your kitchen. Get recommendations for close matches or meals needing minor prep.‬

‭Admin Tools:‬‭Admins can seed recipes, moderate content,‬‭and manage users and‬

‭feedback for a safe and helpful community.‬

‭Target users: Home cooks, students, families, administrators‬

‭KitchenSync was built with a wide range of users in mind:‬

‭●‬ ‭Home Cooks: Want to streamline cooking, reduce waste, and make meal prep‬

‭easier.‬

‭●‬ ‭Busy Students: Need fast, budget-conscious meal planning based on what’s in‬

‭the dorm fridge.‬

‭●‬ ‭Families: Can plan meals for the whole household and share lists or menus.‬

‭●‬ ‭Admins and Moderators: Maintain the recipe library and community content.‬

‭How the system helps reduce food waste and plan meals efficiently‬

‭Many people struggle with forgetting what’s in the fridge, throwing out spoiled food, or‬

‭buying duplicates at the store. Existing solutions offer parts of the fix—but KitchenSync‬

‭combines all of it into one smooth workflow.‬

‭By giving users visibility into their kitchen, personalized recipe suggestions, and‬

‭automatic grocery list generation, KitchenSync makes cooking more convenient,‬

‭budget-friendly, and sustainable.‬

‭Whether you're batch-prepping for the week or throwing together a meal from scraps,‬

‭KitchenSync is your reliable companion in the kitchen.‬

‭Getting Started‬

‭System requirements (Java version, Python dependencies, OS)‬

‭To run KitchenSync, your device must meet the following minimum requirements:‬

‭Operating System: Windows 10 or higher (64-bit)‬

‭Internet Connection:‬

‭●‬ ‭Required for API calls (Open Food Facts, USDA, price scraping)‬

‭●‬ ‭Required for syncing with AWS DynamoDB and retrieving community content‬

‭Installation/launch instructions‬

‭1.‬ ‭Download‬‭KitchenSync‬

‭2.‬ ‭Unzip the file‬

‭3.‬ ‭Run the Installer‬

‭Creating a user account‬

‭1.‬ ‭Launch KitchenSync and select “Sign Up” on the login screen.‬

‭2.‬ ‭Enter:‬

‭a.‬ ‭A display name‬

‭b.‬ ‭A valid email address‬

‭c.‬ ‭A secure password‬

‭3.‬ ‭Click “Create Account”. Your data will be securely stored using AWS DynamoDB.‬

‭4.‬ ‭After account creation, you’ll be redirected to the user dashboard.‬

‭Logging in / resetting password‬

‭1.‬ ‭On the main login screen, enter your email and password.‬

‭2.‬ ‭If you forget your password, click “Forgot Password?” and follow the prompts to‬

‭reset it.‬

‭3.‬ ‭A verification email or temporary code may be used (feature depends on‬

‭deployment settings).‬

https://404-d00d.github.io/fit-senior-design/

‭Role-based access (User vs Admin)‬

‭KitchenSync uses role-based access to tailor functionality:‬

‭●‬ ‭User:‬

‭○‬ ‭Add/manage inventory,‬

‭○‬ ‭create/share recipes,‬

‭○‬ ‭plan meals,‬

‭○‬ ‭generate shopping lists,‬

‭○‬ ‭scan receipts and barcodes,‬

‭○‬ ‭set preferences‬

‭●‬ ‭Admin:‬

‭○‬ ‭Add and moderate community recipes‬

‭○‬ ‭Remove flagged/inappropriate content‬

‭Edit or remove user-generated feedback‬

‭○‬ ‭Manage user accounts and usernames‬

‭○‬ ‭Seed initial recipe database‬

‭Using the Inventory System‬

‭How to add an ingredient‬

‭KitchenSync offers multiple ways to add ingredients to your inventory—whether you‬

‭prefer a manual approach, scanning barcodes, or uploading receipts with OCR.‬

‭1.‬ ‭Manual entry‬

‭a.‬ ‭Access the Inventory Tab:‬

‭From your dashboard, click on the “Inventory” tab.‬

‭b.‬ ‭Click “Add Ingredient”:‬

‭A pop-up form will open.‬

‭c.‬ ‭Fill in the Details:‬

‭i.‬ ‭Name: Enter the ingredient name (e.g., “Whole Milk”).‬

‭ii.‬ ‭Quantity: Specify the amount (e.g., “2”).‬

‭iii.‬ ‭Unit: Choose a unit from the dropdown (cups, pints, liters, etc.).‬

‭iv.‬ ‭Location: Select where the item is stored (Fridge, Freezer, Pantry,‬

‭or Custom).‬

‭v.‬ ‭Expiration Date: (Optional) Choose the expiration date using the‬

‭date picker.‬

‭vi.‬ ‭Tags: Optionally, add tags such as “Expiring Soon,” “Dairy,” or‬

‭“Organic” by typing what you want to tag a item with‬

‭vii.‬ ‭Save the Ingredient:‬

‭Click the “Save” button. The ingredient will now appear in your‬

‭inventory list.‬

‭2.‬ ‭Barcode scanning‬

‭a.‬ ‭Open the Add Ingredient Section:‬

‭b.‬ ‭Select “Scan Barcode”:‬

‭Instead of manual entry, choose the barcode scan option.‬

‭c.‬ ‭Align Barcode:‬

‭Point your camera at the barcode on the product’s packaging.‬

‭d.‬ ‭Automatic Data Retrieval:‬

‭The system uses the barcode data to retrieve product details from a‬

‭linked database (e.g., Open Food Facts). If the information is found, it will‬

‭auto-populate fields such as name and ingredients.‬

‭i.‬ ‭If there is no data available then you will need to add the‬

‭information by hand‬

‭e.‬ ‭Review and Save:‬

‭Verify the displayed details, choose location and tags, then click “Save.”‬

‭3.‬ ‭Receipt OCR upload‬

‭a.‬ ‭Navigate to Receipt Upload:‬

‭In the Inventory section, select the “Receipt Upload” option in “Add‬

‭Ingredients”.‬

‭b.‬ ‭Upload Receipt Image:‬

‭Choose an image file (JPEG, PNG) or take a photo of your receipt.‬

‭c.‬ ‭OCR Processing:‬

‭KitchenSync uses Tesseract OCR and Easy OCR to extract item details‬

‭from the receipt. The system then displays a list of detected products.‬

‭d.‬ ‭Verify Items:‬

‭Check the list and manually correct any errors or missing data (e.g.,‬

‭product names and quantities).‬

‭e.‬ ‭Confirm & Save:‬

‭Once verified, submit the list to add the ingredients to your inventory.‬

‭Editing or deleting items‬

‭Editing an Ingredient:‬

‭1.‬ ‭In your inventory list, right click on the ingredient you want to edit and select edit.‬

‭2.‬ ‭The detail pane will open with current information.‬

‭3.‬ ‭Make the necessary changes (e.g., update quantity, change expiration date).‬

‭4.‬ ‭Click “Update” to save changes.‬

‭Deleting an Ingredient:‬

‭1.‬ ‭Select the ingredient from your list by right clicking.‬

‭2.‬ ‭Click the “Delete” button‬

‭3.‬ ‭Confirm the deletion. The item will be removed from your inventory.‬

‭Viewing by location (Fridge, Freezer, Pantry)‬

‭KitchenSync organizes items based on where they are stored:‬

‭●‬ ‭Fridge: Fresh dairy, leftovers, and perishables.‬

‭●‬ ‭Freezer: Frozen meals, vegetables, and meats.‬

‭●‬ ‭Pantry/Cabinet: Dry goods, canned items, and spices.‬

‭How to View:‬

‭1.‬ ‭In the Inventory tab, you will see filter buttons‬

‭2.‬ ‭Views with “Fridge,” “Freezer,” or “Pantry” to filter the displayed items.‬

‭3.‬ ‭Items will automatically rearrange based on your selection for easier browsing.‬

‭Understanding tags (Expiring Soon, Dairy, Protein)‬

‭Tags help categorize ingredients for efficient tracking and notifications. Examples‬

‭include:‬

‭●‬ ‭Expiring Soon (Automatic based on date set, if it is within 3 days of expiring then‬

‭it will be marked as expiring soon): Mark ingredients that need immediate use.‬

‭●‬ ‭Dairy: For all milk-based and cheese products.‬

‭●‬ ‭Protein: Meats, legumes, and other protein sources.‬

‭Using Tags:‬

‭1.‬ ‭When adding or editing an ingredient, you can then input custom tags.‬

‭2.‬ ‭Use tags to filter your inventory—for example, you can display only “Expiring‬

‭Soon” items or Items you tagged with “meat”‬

‭3.‬ ‭Tags help KitchenSync automate notifications and suggestions based on your‬

‭current inventory for recipes in the Community Recipe Page or in the Meal‬

‭Planner.‬

‭Recipes & Meal Planner‬

‭Creating a recipe (steps, images, equipment)‬

‭1. Adding a New Recipe:‬

‭●‬ ‭Access the Recipe Manager:‬

‭Navigate to the “My Recipes” section from your dashboard.‬

‭●‬ ‭Start New Recipe:‬

‭Click on the “Add Recipe” button to open the recipe creation form.‬

‭●‬ ‭Enter Recipe Details:‬

‭○‬ ‭Name & Description: Give your recipe a title and a brief overview.‬

‭○‬ ‭Steps:‬

‭List sequential steps to prepare and cook the dish. You can add multiple‬

‭steps by clicking “Add Step.”‬

‭○‬ ‭Images:‬

‭Upload images or take photos for each step as well as an overall dish‬

‭image for the recipe card.‬

‭○‬ ‭Equipment Needed:‬

‭Enter any special kitchen tools or appliances required. You can also‬

‭specify substitutes if available.‬

‭●‬ ‭Additional Information:‬

‭○‬ ‭Prep Time, Passive Time, & Cook Time:‬

‭Indicate how much time is needed for each stage. Prep is time needed to‬

‭prepare ingredients and other items often referred to as “mise en place”.‬

‭The Passive time block is where things like dough might need a little extra‬

‭time to just hang out and proof, and lastly Cook time is the time required to‬

‭cook the meal.‬

‭○‬ ‭Ingredients:‬

‭Input ingredients with their name, quantity and the unit used, Ideally the‬

‭unit is in grams as this makes working with the recipe much easier.‬

‭○‬ ‭Nutritional Information:‬

‭Nutritional facts: calories, protein, carbs, fat, will be displayed in a pie‬

‭chart for each recipe. It should be noted these are just estimates and‬

‭might not truly reflect the amounts in a recipe..‬

‭●‬ ‭Save the Recipe:‬

‭Once completed, click “Save”. Your recipe will be added to your personal‬

‭collection and can be shared with the community if you choose.‬

‭Browsing community recipes‬

‭1.‬ ‭Accessing the Community Recipes Section:‬
‭●‬ ‭Click on the “Community Recipes” tab from the main menu.‬

‭●‬ ‭The page displays a grid or list of recipe cards, each showing:‬

‭○‬ ‭A thumbnail image‬

‭○‬ ‭Recipe name‬

‭●‬ ‭Hovering over a recipe shows more information about it‬

‭●‬ ‭Clicking on a recipe shows all the information about that recipe‬

‭2.‬ ‭Filtering and Searching:‬
‭●‬ ‭Tags and Filters:‬

‭Use filters for cuisine type, dietary restrictions (e.g., vegan, gluten-free),‬

‭and difficulty level.‬

‭●‬ ‭Search Bar:‬

‭Quickly find recipes by entering keywords such as “pasta,” “salad,” or‬

‭“quick dinner.”‬

‭●‬ ‭Sort Options:‬

‭Sort by cook time, A-Z, or recommended matches based on your current‬

‭pantry contents, complete and ready are outlined in green, Complete but‬

‭not ready are in yellow, missing ingredients in orange, and lastly no‬

‭matches for ingredients are marked in red.‬

‭3.‬ ‭Viewing a Recipe:‬
‭●‬ ‭Click a recipe card to view detailed instructions, ingredients, equipment,‬

‭and nutritional info.‬

‭●‬ ‭Option to save the recipe to your personal recipe collection or share‬

‭feedback in the form of reviews.‬

‭Planning a meal (day, week, month views)‬

‭Meal Planning Views:‬

‭●‬ ‭Day View:‬
‭See a detailed schedule for a single day. Each meal (breakfast, lunch, dinner,‬

‭snack) is shown with its designated time block.‬

‭●‬ ‭Week View:‬
‭Organize meals for the entire week on a grid that displays each day’s planned‬

‭recipes. Great for meal prepping.‬

‭●‬ ‭Month View:‬
‭Visualize your meal plan for a longer period and plan for special occasions or‬

‭events.‬

‭Using the Planner Interface:‬

‭●‬ ‭Drag and Drop:‬
‭Easily assign recipes to specific days and meal slots using a simple‬

‭drag-and-drop interface.‬

‭●‬ ‭Editable Time Blocks:‬
‭Click on a meal block to adjust the scheduled time or change the recipe.‬

‭Scheduling meals with prep, passive, and cook time‬

‭Customizing Meal Phases:‬

‭●‬ ‭Prep Time:‬

‭Enter the preparation duration, such as washing, chopping, or initial mix.‬

‭●‬ ‭Passive Time:‬

‭Specify any waiting periods needed (e.g., dough rising, marinating).‬

‭●‬ ‭Cook Time:‬

‭Set the time for actual cooking or baking.‬

‭How to Set Up:‬

‭●‬ ‭When scheduling a meal in your planner, enter the date you wish to place the‬

‭meal‬

‭●‬ ‭The system automatically aligns the phases in sequence, ensuring you know‬

‭when to begin prepping, allow for waiting, and start cooking.‬

‭●‬ ‭Visual indicators help distinguish each phase on the planner.‬

‭●‬ ‭Life happens and sometimes you may need to move the time blocks around,‬

‭some of the recipes such as bread have a very specific time limit when it comes‬

‭to proofing the dough these blocks are marked with a * to denote it is not‬

‭recommended to move the block‬

‭Generating a shopping list‬

‭Shopping List Generation:‬

‭●‬ ‭After planning meals, navigate to the “MyList” section.‬

‭●‬ ‭The system compares your planned recipes with your current inventory.‬

‭●‬ ‭List Creation:‬
‭○‬ ‭It automatically generates a list of ingredients that are missing or‬

‭insufficient in quantity.‬

‭●‬ ‭Manual Adjustments:‬
‭○‬ ‭Users can edit the list to add or remove items, or to adjust quantities.‬

‭●‬ ‭Store Integration:‬
‭○‬ ‭For a more tailored experience, the system can fetch price estimates for‬

‭these “needed ingredients”‬

‭○‬ ‭You simply need to press the generate shopping list button for this process‬

‭to take place after any changes you make.‬

‭Smart Features & Recommendations‬

‭“What can I cook now?” logic based on inventory‬

‭Real-Time Inventory Analysis:‬
‭KitchenSync continuously checks your current inventory against its recipe database.‬

‭Based on the items you have on hand, the system identifies recipes that you can‬

‭prepare immediately. This feature minimizes waste by suggesting meals that leverage‬

‭ingredients before they expire.‬

‭Dynamic Matching:‬
‭Using pattern recognition and filtering algorithms, the system considers both mandatory‬

‭ingredients and suitable substitutions. For example, if a recipe calls for basil but you‬

‭only have parsley, KitchenSync may suggest that substitution if it fits the overall flavor‬

‭profile.‬

‭Recommended meals when adding to planner‬

‭Smart Suggestions:‬
‭When you open the menu to select a recipe to cook the system highlights the recipes‬

‭based on their level of completeness and ready to cook status: Complete and ready are‬

‭outlined in green, Complete but not ready are in yellow, missing ingredients in orange,‬

‭and lastly no matches for ingredients are marked in red. The system tries suggest green‬

‭recipes first, yellow second, orange third, and if there are not enough of the first three‬

‭categories then red recipes.‬

‭Nutrition estimates and goals‬

‭Automatic Nutritional Breakdown:‬
‭Every recipe in KitchenSync comes with detailed nutrition estimates, including calories,‬

‭protein, fats, and carbohydrates. These estimates are computed using nutritional‬

‭databases (e.g., USDA FoodData Central) linked to your ingredients to create a recipe‬

‭macro breakdown in the form of pie chart.‬

‭Tag filtering (e.g., Vegetarian, Gluten-Free)‬

‭Flexible Tagging System:‬
‭Recipes and ingredients can be tagged with descriptors such as Vegetarian,‬

‭Gluten-Free, Vegan, High-Protein, and more. Users can filter both the recipe library and‬

‭inventory to show only items matching specific dietary tags.‬

‭Customized Searches:‬
‭When browsing community recipes or planning a meal, applying a tag filter will narrow‬

‭down the available options to those that fit your dietary lifestyle or restrictions. This‬

‭saves time and ensures that you only see relevant options, though our system is not‬

‭perfect and something might slip through the cracks so use your best judgement if‬

‭something seems off.‬

‭Highlighting missing or thaw-required ingredients‬

‭Inventory Mismatch Alerts:‬
‭When planning a recipe, KitchenSync flags any ingredients that are either missing or‬

‭available in insufficient quantities. These items are added to your needed ingredient list‬

‭after adding the meal to your meal planner.‬

‭Thaw-Required Indicators:‬
‭For ingredients like frozen meat or produce, KitchenSync checks their status. If an‬

‭essential ingredient is frozen and requires thawing before use, the system will signal‬

‭this with a visual cue. This helps in planning ahead so that items are ready when you‬

‭need them.‬

‭Automated Adjustments:‬
‭The system can automatically subtract used quantities from your inventory once a meal‬

‭is confirmed, keeping your available ingredients list up to date. If an ingredient is‬

‭nearing its expiration or isn’t enough for the planned meal, you receive a timely‬

‭reminder to purchase additional stock.‬

‭Support, FAQ, & Tips‬

‭Common troubleshooting (e.g., items not showing up, scanning fails)‬

‭●‬ ‭Items Not Showing Up:‬
‭○‬ ‭Refresh the View:‬

‭Click the “Refresh” icon in the Inventory tab.‬

‭○‬ ‭Check Filters:‬
‭Ensure you haven't accidentally applied filters that hide some items.‬

‭○‬ ‭Sync Issues:‬
‭Verify your internet connection; KitchenSync synchronizes with AWS‬

‭databases regularly.‬

‭○‬ ‭Re-login:‬
‭Log out and log back in to reload your inventory data.‬

‭●‬ ‭Scanning Failures (Barcode/Receipt):‬
‭○‬ ‭Barcode Scanning:‬

‭■‬ ‭Ensure your camera has sufficient focus and lighting.‬

‭■‬ ‭Clean the lens or the barcode if necessary.‬

‭■‬ ‭Re-align the barcode within the scanning frame.‬

‭○‬ ‭Receipt OCR Upload:‬
‭■‬ ‭Use a clear, well-lit image.‬

‭■‬ ‭Crop out unnecessary background elements.‬

‭■‬ ‭Confirm that text on the receipt is legible.‬

‭○‬ ‭Error Messages:‬
‭If the system displays an error, check the notification area for specific‬

‭instructions or try restarting the scan.‬

‭●‬ ‭General Technical Issues:‬
‭○‬ ‭Update the App:‬

‭Ensure you are running the latest version of KitchenSync.‬

‭○‬ ‭Check for System Alerts:‬
‭Review any on-screen notifications or prompts that suggest steps to‬

‭resolve issues.‬

‭○‬ ‭Reboot:‬
‭Try closing and reopening the application.‬

‭○‬ ‭Consult the FAQ:‬
‭See the frequently asked questions below for any similar reported issues.‬

‭Tips for maximizing inventory life‬

‭●‬ ‭Regular Updates:‬
‭Regularly update your inventory to reflect purchases and consumption. This‬

‭minimizes waste and ensures recipes are suggested accurately.‬

‭●‬ ‭Tag Expiry Dates:‬
‭Use the “Expiring Soon” tag to track items close to their use-by date. Plan meals‬

‭that utilize these ingredients to reduce spoilage.‬

‭●‬ ‭Proper Storage Recommendations:‬
‭Follow storage tips provided within KitchenSync (e.g., store perishables at the‬

‭recommended temperature) to extend shelf life.‬

‭●‬ ‭Batch Entry and Receipt Uploads:‬
‭Use the receipt OCR upload feature to quickly add multiple items at once,‬

‭ensuring your inventory is always current.‬

‭●‬ ‭Periodic Audits:‬
‭Once a week, review your inventory to remove expired items and adjust‬

‭quantities as necessary.‬

‭FAQ (e.g., “Can I share recipes?”)‬

‭Can I share recipes with other users?‬
‭Yes, all users can post their own recipes‬

‭Administrators also have tools for moderating shared content.‬

‭What happens to my inventory when I plan a meal?‬
‭When a meal is marked as made, KitchenSync deducts the used ingredients from your‬

‭inventory, keeping your stock levels accurate.‬

‭How secure is my account information?‬
‭KitchenSync uses AWS DynamoDB for secure storage of user data and follows‬

‭industry-standard encryption practices for sensitive information.‬

‭How do I reset my password?‬
‭Use the “Forgot Password?” link on the login screen. Follow the emailed instructions to‬

‭reset your password securely.‬

‭Can I sync multiple kitchens?‬
‭Currently, KitchenSync is designed to manage one kitchen inventory per account.‬

‭Future updates may provide multi-kitchen support.‬

‭Glossary of terms (Prep Time, Passive Time, Meal Group ID, etc.)‬

‭●‬ ‭Prep Time:‬
‭The estimated time needed to prepare ingredients before cooking begins. This‬

‭includes washing, chopping, and mixing.‬

‭●‬ ‭Passive Time:‬
‭Periods during cooking where active intervention is not required (e.g., dough‬

‭rising, marinating).‬

‭●‬ ‭Cook Time:‬
‭The actual time required for the cooking or baking process to complete.‬

‭●‬ ‭Meal Group ID:‬
‭A unique identifier assigned to related meal components (e.g., different phases of‬

‭the same meal) for tracking within a meal plan.‬

‭●‬ ‭Inventory:‬
‭Your complete list of kitchen items tracked within KitchenSync. Items are‬

‭organized by location (Fridge, Freezer, Pantry).‬

‭●‬ ‭Tags:‬
‭Labels assigned to ingredients or recipes (such as “Expiring Soon,” “Dairy,”‬

‭“Protein,” “Vegetarian,” or “Gluten-Free”) to facilitate filtering and smart‬

‭recommendations.‬

‭●‬ ‭OCR (Optical Character Recognition):‬
‭A technology that converts different types of documents, such as scanned‬

‭receipts, into editable and searchable data.‬

‭●‬ ‭Barcode Scanning:‬
‭A quick method to input product information by reading a UPC or EAN barcode‬

‭on the item’s packaging.‬

‭Developer Manual‬

‭System Architecture & Technologies‬

‭System architecture diagram:‬

‭Description of how components interact (e.g., Java calls Python)‬

‭Technologies used:‬

‭Technology‬ ‭Version / Tool‬ ‭Purpose & Notes‬

‭Java 17 & JavaFX‬ ‭Java 17, JavaFX 23.0.1‬ ‭Desktop UI framework. All‬
‭screens and controls built‬
‭in JavaFX, layouts‬
‭designed in FXML.‬

‭SceneBuilder‬ ‭20.0.0‬ ‭Visually author/manipulate‬
‭FXML scenes and bind‬
‭controllers.‬

‭Python 3.10‬ ‭CPython‬ ‭Backend microservices for‬
‭OCR, barcode decoding,‬
‭and price scraping.‬

‭Tesseract OCR‬ ‭v5.x‬ ‭Parses receipt images into‬
‭text—integrated via‬
‭pytesseract‬‭.‬

‭AWS DynamoDB‬ ‭Managed NoSQL‬ ‭Stores Users, Recipes,‬
‭Inventory, MealPlans.‬

‭AWS S3‬ ‭Managed Object Storage‬ ‭Hosts recipe images;‬
‭accessed via pre‑signed‬
‭URLs.‬

‭Open Food Facts API‬ ‭REST v2‬ ‭Lookup product info‬
‭(name, ingredients) by‬
‭UPC for barcodes.‬

‭USDA FoodData Central‬ ‭API v1‬ ‭Fallback nutrition data‬
‭when Open Food Facts is‬
‭missing.‬

‭VS Code‬ ‭1.80+‬ ‭Primary IDE for both Java‬
‭and Python development.‬

‭GitHub‬ ‭Git + GitHub Actions‬ ‭Source control, code‬
‭reviews, and CI/CD‬
‭pipelines.‬

‭Source Code Structure‬

‭●‬ ‭Project structure overview:‬

‭src/‬

‭main/‬

‭java/‬

‭org/javafx/‬

‭Controllers/ (Controllers for each page + supporting modules)‬

‭Item/ (Item Class)‬

‭Main/ (Main Body Class)‬

‭Recipe/ (Recipe Class)‬

‭AdminPortal.java (Admin portal class)‬

‭Module-info.java (Maven Project connector)‬

‭python/ (All the .py modules)‬

‭resources/org/javafx/Resources/‬

‭css/‬

‭FXML/‬

‭Item Images/‬

‭Recipe Images/‬

‭Test Receipts/‬

‭jsons/‬

‭Collections (Groupings for recipes to be aggregate into)‬

‭flavorMatrix (Matrix of what ingredients pair well together + Flavor combinations)‬

‭IngredientDictionary (Common ingredients with weights in grams)‬

‭itemInventory (User Inventory)‬

‭Lists (Users Lists)‬

‭MealPlans (Meal Plan of current planned meals)‬

‭Recipes‬

‭SpacesAndCategories (User specified locations for storage)‬

‭Substitutions (Common ingredient substitutions)‬

‭Key Java Classes & Methods‬

‭Overview of key classes:‬

‭●‬ ‭Main.java – Entry point‬

‭●‬ ‭InventoryController.java‬

‭●‬ ‭MealPlannerController.java‬

‭Each Controller is responsible for the screen in which it is named after. Functionality of‬

‭that screen is handled by its respective controller. Some processes such as macros or‬

‭pricing are handled by a .py script found in the python/ folder.‬

‭Sample method descriptions:‬

‭Method‬ ‭Class‬ ‭Description‬ ‭Parameters‬ ‭Returns‬

‭addIngredien‬
‭t(...)‬

‭InventoryCont‬
‭roller‬

‭Validates‬
‭input, updates‬
‭local list and‬
‭calls‬
‭DynamoDB‬
‭API to store a‬
‭new‬
‭ingredient‬

‭name: String,‬
‭quantity:‬
‭double, unit:‬
‭String,‬
‭location:‬
‭String,‬
‭expiration:‬
‭LocalDate,‬
‭tags:‬
‭List<String>‬

‭void‬

‭editIngredien‬
‭t(...)‬

‭InventoryCont‬
‭roller‬

‭Opens‬
‭ingredient‬
‭detail pane,‬
‭applies‬
‭changes to‬
‭both UI and‬
‭database‬

‭ingredientId:‬
‭String,‬
‭updatedFields‬
‭: Map<String,‬
‭Object>‬

‭boolean‬

‭deleteIngredi‬
‭ent(id)‬

‭InventoryCont‬
‭roller‬

‭Removes‬
‭item from UI‬
‭list and issues‬
‭delete to‬
‭DynamoDB‬

‭ingredientId:‬
‭String‬

‭boolean‬

‭populateReci‬ ‭CommunityR‬ ‭Fetches‬ ‭none‬‭(uses‬ ‭void‬

‭peFlowPane(‬
‭)‬

‭ecipesControl‬
‭ler‬

‭filtered‬
‭recipes from‬
‭DynamoDB,‬
‭creates‬
‭RecipeCard‬
‭nodes, and‬
‭adds them to‬
‭the FlowPane‬

‭current filter‬
‭state within‬
‭controller)‬

‭addMealToPl‬
‭an(mealBloc‬
‭k)‬

‭MealPlanner‬
‭Controller‬

‭Inserts a new‬
‭time block‬
‭(prep/passive/‬
‭cook) into the‬
‭model and‬
‭refreshes the‬
‭calendar grid‬
‭and DB‬

‭mealBlock:‬
‭Map<String,O‬
‭bject>‬
‭(contains‬
‭recipeID,‬
‭date, hour,‬
‭duration,‬
‭mealGroupId)‬

‭void‬

‭deleteMealFr‬
‭omPlan(id)‬

‭MealPlanner‬
‭Controller‬

‭Removes all‬
‭time blocks‬
‭sharing the‬
‭same‬
‭mealGroupId,‬
‭updates UI‬
‭and persists‬
‭deletion in‬
‭DynamoDB‬

‭mealGroupId:‬
‭double‬

‭void‬

‭loadDailyNut‬
‭rition(date)‬

‭MealPlanner‬
‭Controller‬

‭Queries‬
‭planned‬
‭meals for a‬
‭given date,‬
‭aggregates‬
‭nutrition‬
‭values, and‬
‭populates the‬
‭PieChart‬
‭widget‬

‭date:‬
‭LocalDate‬

‭NutritionData‬

‭How to Extend‬

‭1.‬ ‭Adding a New Controller‬
‭○‬ ‭Create‬‭NewFeatureController.java‬‭in‬‭org.javafx.Controllers‬‭.‬

‭○‬ ‭Define corresponding‬‭NewFeatureView.fxml‬‭under‬‭/resources/fxml/‬‭.‬

‭○‬ ‭Register the new scene in‬‭Main.java‬‭and add navigation via the side‬

‭menu.‬

‭2.‬ ‭Defining Methods‬
‭○‬ ‭Follow existing patterns:‬

‭■‬ ‭UI binding:‬‭annotate with‬‭@FXML‬

‭■‬ ‭Event handlers:‬‭name methods‬‭onXxxButtonClick()‬

‭■‬ ‭Persistence:‬‭use DynamoDB SDK calls in a separate‬‭DataService‬

‭helper class‬

‭Python Modules & Integration‬

‭BarcodeModule.py – Decodes barcodes, uses Open Food Facts API‬

‭ReceiptProcessor.py – Extracts text from receipt image via Tesseract‬

‭Integration via ProcessBuilder or Runtime.exec‬

‭Invocation‬

‭●‬ ‭Java controllers launch Python scripts using either‬

‭ProcessBuilder pb = new ProcessBuilder("python", "BarcodeModule.py", imagePath);‬

‭●‬ ‭Or‬

‭Runtime.getRuntime().exec(new String[] {"python", "ReceiptProcessor.py"});‬

‭Data Exchange‬

‭●‬ ‭Input‬‭(CLI args or JSON via STDIN):‬

‭○‬ ‭Barcode script gets image file path as argument.‬

‭○‬ ‭Receipt script reads image path or raw bytes from STDIN.‬

‭●‬ ‭Output‬‭(JSON via STDOUT):‬

‭○‬ ‭Each script writes a JSON array or object representing parsed items.‬

‭Best Practices‬

‭●‬ ‭JSON-Only I/O: Keep all inter‑process communication in JSON for reliable‬

‭parsing.‬

‭●‬ ‭Version Pinning: Use requirements.txt to lock library versions (pyzbar==0.1.8,‬

‭pytesseract==0.3.9).‬

‭●‬ ‭Timeouts & Retries: Configure Java’s ProcessBuilder with timeouts and retry‬

‭logic to handle OCR delays or network hiccups.‬

‭●‬ ‭Logging: Have Python scripts emit logs to STDERR (not JSON) for debugging‬

‭without polluting STDOUT.‬

‭Database & API Details‬

‭DynamoDB schema for:‬

‭●‬ ‭Recipes (DBID, category, complexity, cookTime, description, feedback,‬

‭ingredients, name, passiveTime, prepTime, servings, specialEquipment, Steps,‬

‭tags, UserId)‬

‭private‬‭void‬‭uploadRecipe‬‭() {‬

‭if‬‭(‬‭!‬‭validateInputs‬‭()) {‬

‭System‬‭.‬‭out‬‭.‬‭println‬‭(‬‭"Please fill in all required‬‭fields."‬‭);‬

‭return‬‭;‬

‭}‬

‭//Change to get the UsersID‬

‭String‬‭userId‬‭=‬‭"testUserID123"‬‭;‬ ‭// e.g. "alice123"‬

‭String‬‭recipeName‬‭=‬‭UploadRecipeName‬‭.‬‭getText‬‭();‬

‭int‬‭prepTime‬‭=‬‭Integer‬‭.‬‭parseInt‬‭(‬‭recipeETAPrep‬‭.‬‭getText‬‭());‬

‭int‬‭cookTime‬‭=‬‭Integer‬‭.‬‭parseInt‬‭(‬‭recipeETA‬‭.‬‭getText‬‭());‬

‭int‬‭passiveTime‬‭=‬‭Integer‬‭.‬‭parseInt‬‭(‬‭recipeETAPassive‬‭.‬‭getText‬‭());‬

‭int‬‭servings‬‭=‬‭Integer‬‭.‬‭parseInt‬‭(‬‭recipeYield‬‭.‬‭getText‬‭());‬

‭String‬‭description‬‭=‬‭recipeDescription‬‭.‬‭getText‬‭();‬

‭Map‬‭<‬‭String‬‭,‬‭AttributeValue‬‭>‬‭recipeItem‬‭=‬‭new‬‭HashMap‬‭<>();‬

‭String‬‭recipeDBID‬‭=‬‭UUID‬‭.‬‭randomUUID‬‭().‬‭toString‬‭();‬

‭recipeItem‬‭.‬‭put‬‭(‬‭"Recipe"‬‭,‬

‭AttributeValue‬‭.‬‭builder‬‭().‬‭s‬‭(‬‭recipeDBID‬‭).‬‭build‬‭());‬

‭recipeItem‬‭.‬‭put‬‭(‬‭"UserId"‬‭,‬

‭AttributeValue‬‭.‬‭builder‬‭().‬‭s‬‭(‬‭userId‬‭).‬‭build‬‭());‬

‭recipeItem‬‭.‬‭put‬‭(‬‭"name"‬‭,‬

‭AttributeValue‬‭.‬‭builder‬‭().‬‭s‬‭(‬‭recipeName‬‭).‬‭build‬‭());‬

‭recipeItem‬‭.‬‭put‬‭(‬‭"prepTime"‬‭,‬

‭AttributeValue‬‭.‬‭builder‬‭().‬‭n‬‭(‬‭String‬‭.‬‭valueOf‬‭(‬‭prepTime‬‭)).‬‭build‬‭());‬

‭recipeItem‬‭.‬‭put‬‭(‬‭"cookTime"‬‭,‬

‭AttributeValue‬‭.‬‭builder‬‭().‬‭n‬‭(‬‭String‬‭.‬‭valueOf‬‭(‬‭cookTime‬‭)).‬‭build‬‭());‬

‭recipeItem‬‭.‬‭put‬‭(‬‭"passiveTime"‬‭,‬

‭AttributeValue‬‭.‬‭builder‬‭().‬‭n‬‭(‬‭String‬‭.‬‭valueOf‬‭(‬‭passiveTime‬‭)).‬‭build‬‭());‬

‭recipeItem‬‭.‬‭put‬‭(‬‭"servings"‬‭,‬

‭AttributeValue‬‭.‬‭builder‬‭().‬‭n‬‭(‬‭String‬‭.‬‭valueOf‬‭(‬‭servings‬‭)).‬‭build‬‭());‬

‭recipeItem‬‭.‬‭put‬‭(‬‭"description"‬‭,‬

‭AttributeValue‬‭.‬‭builder‬‭().‬‭s‬‭(‬‭description‬‭).‬‭build‬‭());‬

‭recipeItem‬‭.‬‭put‬‭(‬‭"ingredients"‬‭,‬‭AttributeValue‬‭.‬‭builder‬‭()‬

‭.‬‭l‬‭(‬‭ingredientEntries‬‭.‬‭stream‬‭()‬

‭.‬‭map‬‭(‬‭val‬‭->‬‭AttributeValue‬‭.‬‭builder‬‭().‬‭s‬‭(‬‭val‬‭).‬‭build‬‭())‬

‭.‬‭collect‬‭(‬‭Collectors‬‭.‬‭toList‬‭()))‬

‭.‬‭build‬‭());‬

‭recipeItem‬‭.‬‭put‬‭(‬‭"steps"‬‭,‬‭AttributeValue‬‭.‬‭builder‬‭()‬

‭.‬‭l‬‭(‬‭preparationSteps‬‭.‬‭stream‬‭()‬

‭.‬‭map‬‭(‬‭step‬‭->‬‭AttributeValue‬‭.‬‭builder‬‭().‬‭s‬‭(‬‭step‬‭).‬‭build‬‭())‬

‭.‬‭collect‬‭(‬‭Collectors‬‭.‬‭toList‬‭()))‬

‭.‬‭build‬‭());‬

‭recipeItem‬‭.‬‭put‬‭(‬‭"tags"‬‭,‬‭AttributeValue‬‭.‬‭builder‬‭()‬

‭.‬‭l‬‭(‬‭tags‬‭.‬‭stream‬‭()‬

‭.‬‭map‬‭(‬‭tag‬‭->‬‭AttributeValue‬‭.‬‭builder‬‭().‬‭s‬‭(‬‭tag‬‭).‬‭build‬‭())‬

‭.‬‭collect‬‭(‬‭Collectors‬‭.‬‭toList‬‭()))‬

‭.‬‭build‬‭());‬

‭recipeItem‬‭.‬‭put‬‭(‬‭"equipment"‬‭,‬‭AttributeValue‬‭.‬‭builder‬‭()‬

‭.‬‭l‬‭(‬‭equipment‬‭.‬‭stream‬‭()‬

‭.‬‭map‬‭(‬‭eq‬‭->‬‭AttributeValue‬‭.‬‭builder‬‭().‬‭s‬‭(‬‭eq‬‭).‬‭build‬‭())‬

‭.‬‭collect‬‭(‬‭Collectors‬‭.‬‭toList‬‭()))‬

‭.‬‭build‬‭());‬

‭try‬‭{‬

‭// Upload Recipe to DynamoDB‬

‭database‬‭.‬‭putItem‬‭(‬‭PutItemRequest‬‭.‬‭builder‬‭()‬

‭.‬‭tableName‬‭(‬‭"Recipes"‬‭)‬

‭.‬‭item‬‭(‬‭recipeItem‬‭)‬

‭.‬‭build‬‭());‬

‭// Upload Image to S3‬

‭// add multi image functions‬

‭if‬‭(‬‭selectedImageFile‬‭!=‬‭null‬‭) {‬

‭String‬‭s3Key‬‭=‬‭userId‬‭+‬‭"-"‬‭+‬‭recipeDBID‬‭+‬‭".jpg"‬‭;‬

‭s3Client‬‭.‬‭putObject‬‭(‬‭PutObjectRequest‬‭.‬‭builder‬‭()‬

‭.‬‭bucket‬‭(‬‭"kitchensyncimages"‬‭)‬

‭.‬‭key‬‭(‬‭s3Key‬‭)‬

‭.‬‭build‬‭(),‬

‭RequestBody‬‭.‬‭fromFile‬‭(‬‭selectedImageFile‬‭));‬

‭System‬‭.‬‭out‬‭.‬‭println‬‭(‬‭"Image uploaded‬‭to S3: "‬‭+‬‭s3Key‬‭);‬

‭}‬

‭System‬‭.‬‭out‬‭.‬‭println‬‭(‬‭"Recipe uploaded successfully!"‬‭);‬

‭loadCommunityRecipes‬‭();‬‭// Refresh community‬‭recipes‬

‭addRecipePaneP2‬‭.‬‭setVisible‬‭(‬‭false‬‭);‬

‭myRecipesPane‬‭.‬‭setVisible‬‭(‬‭true‬‭);‬

‭}‬‭catch‬‭(‬‭Exception‬‭e‬‭) {‬

‭e‬‭.‬‭printStackTrace‬‭();‬

‭System‬‭.‬‭out‬‭.‬‭println‬‭(‬‭"Error uploading recipe."‬‭);‬

‭}‬

‭}‬

‭APIs used:‬

‭●‬ ‭Open Food Facts (nutrition) + USDA Nutritional Information DB‬

‭Image storage‬
‭S3 Bucket‬‭-> For Cloud Storage on the community recipe‬‭page‬

‭Local Files -> Locally saved Recipes‬

‭Image naming convention: UserId + “-” + RecipeId + stepNumber. png‬

‭Recipe Id’s are generated using UUID to make sure similarly named recipes are still‬

‭able to be uploaded and not to have issues with handling images. The stepNumber is‬

‭only for recipes that have more then one image to be displayed.‬

‭Development Setup & Contribution Guide‬

‭How to run the project locally (JavaFX setup, Python requirements)‬

‭Prerequisites‬

‭●‬ ‭Java 17+ with JavaFX SDK 23.0.1‬
‭●‬ ‭Python 3.10+ with pyzbar, pillow, pytesseract, requests‬
‭●‬ ‭Tesseract OCR installed and on your PATH‬
‭●‬ ‭AWS Credentials configured (for DynamoDB/S3 access)‬
‭●‬ ‭Git and VS Code (or your IDE of choice)‬

‭1.‬ ‭Clone Repository‬
‭a.‬ ‭git clone https://github.com/YourOrg/KitchenSync.git‬
‭b.‬ ‭cd KitchenSync‬

‭2.‬ ‭Install Python Dependencies‬
‭a.‬ ‭pip install -r requirements.txt‬

‭3.‬ ‭Build & Run JavaFX App‬
‭a.‬ ‭mvn clean package‬
‭b.‬ ‭java --module-path /path/to/javafx-sdk/lib \‬
‭c.‬ ‭--add-modules javafx.controls,javafx.fxml \‬
‭d.‬ ‭-jar target/KitchenSync.jar‬

‭How to add a new controller/screen‬

‭Design FXML‬

‭●‬ ‭Create src/main/resources/fxml/NewFeatureView.fxml in SceneBuilder.‬

‭Controller Class‬

‭●‬ ‭Add NewFeatureController.java under org.javafx.Controllers.‬
‭●‬ ‭Annotate UI elements with @FXML and implement init/event methods.‬

‭Wire It Up‬

‭In Main.java, add a menu/button action to load your new FXML:‬

‭FXMLLoader loader = new FXMLLoader(getClass()‬
‭.getResource("/fxml/NewFeatureView.fxml"));‬

‭Parent root = loader.load();‬
‭stage.setScene(new Scene(root));‬

‭Test‬

‭●‬ ‭Run the app and navigate via your new menu item or button.‬

‭Coding guidelines (e.g., method naming, error handling)‬

‭Naming‬

‭●‬ ‭Classes: PascalCaseController (e.g., InventoryController)‬
‭●‬ ‭Methods: camelCaseAction() (e.g., onAddIngredientClick())‬

‭Constants: SCREAMING_SNAKE_CASE‬

‭Error Handling‬

‭●‬ ‭Catch exceptions at the controller boundary‬
‭●‬ ‭Log detailed errors to STDERR or a log file‬
‭●‬ ‭Surface user-friendly messages via dialog boxes‬

‭Formatting‬

‭●‬ ‭4‑space indentation, max line length 100‬
‭●‬ ‭Use @FXML only on fields & handler methods‬

‭Documentation‬

‭●‬ ‭Javadoc for public methods and classes‬
‭●‬ ‭Inline comments for non‑obvious logic‬

‭How to submit features or fix bugs‬

‭1.‬ ‭Branching‬
‭a.‬ ‭git checkout -b feature/your-feature-name‬
‭b.‬ ‭# or‬
‭c.‬ ‭git checkout -b bugfix/issue-123-description‬

‭2.‬ ‭Implement & Test‬
‭a.‬ ‭Write code, update FXML, add unit/integration tests.‬

‭3.‬ ‭Commit‬
‭a.‬ ‭feat: add barcode auto-detect on inventory screen‬
‭b.‬ ‭fix: handle null image paths in ReceiptProcessor‬

‭4.‬ ‭Push & PR‬
‭a.‬ ‭git push origin feature/your-feature-name‬

‭5.‬ ‭Code Review‬
‭a.‬ ‭At least one approval required.‬
‭b.‬ ‭Address review comments with follow‑up commits.‬
‭c.‬ ‭Merge via “Squash and Merge” to keep history clean.‬

‭Git best practices:‬

‭●‬ ‭Keep main Clean:‬‭Always rebase or merge main before‬‭creating a PR.‬

‭●‬ ‭Small, Focused PRs:‬‭Aim for < 200 lines of change.‬

‭●‬ ‭Descriptive Commits:‬‭Start with feat:, fix:, chore:,‬‭or docs:.‬

‭●‬ ‭Issue Tracking:‬‭Link PRs to issue tracker tickets‬‭for traceability.‬

‭●‬ ‭CI/CD:‬‭Ensure all checks (unit tests, linting) pass‬‭before merging.‬

